MLRS 2023 Tutorial: Part I

https://www.mlrs.ai/

Introduction to Causal Machine Learning

Amit Sharma

Principal Researcher

Microsoft Research

www.amitsharma.in Twitter: @amt_shrma

Two session series on Causal ML

• Session 1: Intro to causal machine learning

- Estimating causal effect, explaining outcomes, and out-of-distribution generalization
- Session 2: Causal machine learning in practice
 - PyWhy/DoWhy and the promise of large language models

Session goals: Intro to causal machine learning

- What is the difference between **causal** and **predictive** machine learning (ML)?
 - Side-goal: Learn about causality fundamentals
- When is causal ML **useful**?
- What can you achieve with causality + ML?
 - Looking forward: Take better decisions
 - Looking backward: Explain the reasons for observed outcomes
 - Improving ML models: Better generalization of ML models

Outline

1. What is causal ML and why do we need it?

- 1. What can you achieve using causal ML?
- 2. When is it practically useful compared to predictive ML?

2. Fundamental concepts in causality

- 1. Interventions and counterfactuals
- 2. Causal graph

3. Three main applications

- 1. Choosing the "best" decision for a target outcome
- 2. Attributing causes for a target outcome
- 3. Building predictive models that generalize out-of-distribution

Section 1: What is causal ML and why do we need it?

When we think of machine learning, we often think of **predictions: What does the data say?**

Customers Who Bought This Item Also Bought

The Elements of Statistical Learning: ... Trevor Hastle Hardcover \$82.11 **/Prime**

But there's an important class of problems about **decisions: what action should I take?**

Which customers should we provide discounts to improve sales?

Which treatment will have the best improvement for a patient?

Would this government regulation lead to a decrease in air pollution?

What is the best way to share an important public safety message?

Sometimes, these problems overlap...

• Accurate prediction also means accurate decision-making.

- Prediction task: Does the X-ray image indicate a tumor?
- **Decision task:** Should we give tumor treatment or not?

But sometimes, they do not

- Prediction task: Predict the customers most likely to churn out.
- **Decision task:** Who to provide discounts to?
 - Discounts may not work on people likely to churn out (low activity)
 - May be unnecessary for people with high activity.
 - Only need to find the people in the middle, who are undecided.

Reason: Correlation versus causation

- Today's product usage can predict tomorrow's probability of churn (not renewing contract).
- But does not tell us anything about effect of discount.
 - Effect could even be zero!

And often, decision-making requires solving a new kind of problem: **effect estimation**

• Effect estimation: What is the effect of an action on the outcome?

What is the best way to share an important public safety message?

Would this government regulation lead to a decrease in air pollution?

Q: What is the effect of sharing medium on response rate for the safety message?

Q: What is the effect of the regulation on air pollution?

In effect estimation, the most important task is **how to avoid being fooled by correlations**

What is the best way to share an importantWould this government regulationpublic safety message?lead to a decrease in air pollution?

Observed data: The response rate of text messages is the highest.

Selection bias: Dataset contains mostly young people.

Observed data: In other states, pollution decreased after the regulation. **Confounding bias:** Other states differ on the kind of industries they have.

So, how to solve these problems in a systematic way?

Incorporate techniques for **learning causality** in ML models.

Causal ML is about inferring the **best actions** (and the effects of actions in general)

Hofman, **Sharma**, and Watts (2017). Prediction and Explanation in Social Systems. *Science*, 355.6324

Three key applications of causal ML: Better decision-making (what to do next?)

People who do not cycle have high cholesterol People who cycle regularly have low cholesterol

Decision: To improve cholesterol levels of the population, should the city government invest in programs for encouraging cycling (e.g., giving free bikes)?

Three key applications of causal ML: **Root cause attribution** (why did this happen?)

Attribution: Why did the classifier predict Class:1 for the first image?

Attribution: For a given the microservice system, why did the latency increase?

Three key applications of causal ML: **Out-of-distribution generalization**

Satellite Image (x)					
Year / Region (d)	2002 / Americas	2009 / Africa	2012 / Europe	2016 / Americas	2017 / Africa
Building / Land Type (y)	shopping mall	multi-unit residential	road bridge	recreational facility	educational institution

Koh et al., WILDS, ICML 2021

To summarize,

Causal ML: Machine learning + causality

A necessary ingredient for general-purpose AI

Section 2: Fundamental concepts in causality (intervention, counterfactual, & causal graph)

Intervention: A formal definition for taking an action

Intervention: An active action taken that changes the distribution of a variable *T*.

• Different from *observing* two different values of T.

Mathematically represented using the **do-operator**

P(Health|Cycling, Age, Color)

P*(Health|Cycling, Age, Color)
=P(Health|do(Cycling), Age, Color)

Important: A do-intervention affects only the desired variable, **keeping everything else fixed**

P(Health|Cycling, Age, Color)

P*(Health|Cycling, Age, Color)
!=P(Health|do(Cycling), Age, Color)

Second important concept: **counterfactual** (What would have happened *if*)

Real World

Counterfactual World

vion

2

Counterfactual: Complicated to express formally, but intuitive to grasp

 $P(Health_{t+1,0}|Health_{t+1}^*, Health_t^*, Cycle_{t+1} = 1, do(Cycle_{t+1}) = 0)$

Given that person started cycling and improved their health, *what would have happened to their health if they did not start cycling, but everything else remained the same*?

Now we are ready to define the **causal effect** of a variable

Definition: X causes Y iff

changing X leads to a change in Y, keeping everything else constant.

The **causal effect** is the magnitude by which Y is changed by a unit change in X.

$$P(Y|do(X = 1)) - P(Y|do(X = 0))$$

Real World

Counterfactual World

As we will see, the key problem is that one of the terms is **never observed in data**

$$P(Y|do(X = 1)) - P(Y|do(X = 0))$$

$$= P^{obs}(Y|X = 1) - P(Y|do(X = 0))$$

Predictive ML solves the problem by assuming $P(Y|do(X = 0)) = P^{obs} (Y|X = 0)$

The goal of causal ML is to find a better approximation.

Final concept: **Causal graph** to encode assumptions that help estimate the unseen

- A good graph exposes the key assumptions about how different variables affect each other
 - $A \rightarrow B$ or $B \rightarrow A$?

Failure case: What can happen without causal assumptions?

tylervigen.com

http://www.tylervigen.com/spurious-correlations

Interpreting a causal graph: d-separation

- Edges encode mechanisms
 - direct causes
- Graph implies conditional statistical independences
 - E.g., $A \perp C$, $D \perp A \mid B$, ...
 - Identified by *d-separation* rules

Interpreting a causal graph: d-separation

If conditioned on X

If conditioned on X

If not conditioned on X

Three kinds of node-edges

Path is "blocked" \rightarrow path is d-separated

Insight: The assumptions are not the edges you create, but the edges you omit

- Assumptions are encoded by missing edges, and direction of edges
- Relationships represent stable and independent mechanisms
- It is not always possible to learn a graph from observational data

How to obtain a causal graph? Use **domain knowledge** (Example 1)

• Estimating the effect of customer rewards program

How to obtain a causal graph? Use **domain knowledge** (Example 2)

Section 3: Applications of causal ML (decision-making, root cause attribution, out-of-distribution generalization)

Decision-making: Given a target outcome, which action maximizes the outcome value?

Frame as causal effect estimation problem $P(Y|do(A = a_1)), P(Y|do(A = a_2)), ...$

Rank the different causal effects

Choose the action with highest causal effect on outcome.

Randomized "A/B" test: A simple solution if you can intervene and create new data

But what to do if we **cannot intervene**?

People who do not cycle have high cholesterol People who cycle regularly have low cholesterol

Simple Matching: Match data points with the same confounders and then compare their outcomes

Identify pairs of treated (j) and untreated individuals (k) who are similar or identical to each other.

Match :=
$$Distance(W_j, W_k) < \epsilon$$

• Paired individuals have almost the same confounders.

Causal Effect =

$$\sum_{(j,k)\in Match}(y_j-y_k)$$

Challenges of building a good estimator

- Variance: If we have a stringent matching criterion, we may obtain very few matches and the estimate will be unreliable.
- **Bias:** If we relax the matching criterion, we obtain many more matches but now the estimate does not capture the target estimand.
- Uneven treatment assignment: If very few people have treatment, leads to both high bias and variance.

Need better methods to navigate the bias-variance tradeoff.

The intuition leads to a popular principle for estimating causal effect: **backdoor criterion**

Backdoor formula

$$p(Y|do(T)) = \sum_{Z} p(Y|T,Z)p(Z)$$

Where Z must be a valid adjustment set:

- The set of all parents of ${\cal T}$
- Features identified via *backdoor criterion*
- Features identified via "towards necessity" criterion

Intuitions:

- The union of all features is *not* necessarily a valid adjustment set
- Why not always use parents? Sometimes parent features are unobserved

Voila! Effect inference problem reduced to estimating **conditional expectation**

For common identification strategies using adjustment sets,

E[Y|do(T = t), W = w] = E[Y|T = t, W = w]

assuming W is a valid adjustment set.

• For binary treatment,

Causal Effect = E[Y|T = 1, W = w] - E[Y|T = 0, W = w]

Goal: Estimating conditional probability Y|T=t when all confounders W are kept constant.

Machine learning methods can help find a better match for each data point

Synthetic Control: If a good match does not exist for a data point, can we create it synthetically?

Learn
$$y = f_{t=0}(w)$$
,
 $y = f_{t=1}(w)$

Assuming f approximates the true relationship between Y and W,

Causal Effect =

$$\sum_{i} t_i (y_i - f_{t=0}(w_i)) + (1 - t_i)(f_{t=1}(w_i) - y_i)$$

Confounder (W)

A better solution: use **debiased ML** estimator

utcome

The standard predictor, $y = f(t, w) + \epsilon$ may not provide the right estimate for $\frac{\partial y}{\partial t}$.

Debiased-ML [Chernozhukov et al. 2016]:

• Stage 1: Break down conditional estimation into two prediction sub-tasks.

$$\hat{y} = g(w) + \tilde{y}$$
$$\hat{t} = h(w) + \tilde{t}$$

 \tilde{y} and \tilde{t} refer to the unconfounded variation in Y and T respectively after conditioning on w.

• Stage 2: A final regression of \tilde{y} on \tilde{t} gives the causal effect.

 $\tilde{y} \sim \beta \tilde{t} + \epsilon$

Second key application for causal ML: **Root cause attribution**

B

• Effect of A on B: $P(B|do(A)) = \sum_{c} P(B|A, C) P(C)$

For attribution, need to estimate the **counterfactual.**

Q: Given that B = b and C = c, how would **B** change if **C** was changed?

 $P(B_{c'}|B = b, C = c, A = a, do(C = c'))$

Second key application for causal ML: **Root cause attribution**

Q: Given that B = b and C = c, **how would B** change if C was changed? $P\left(B_{c'} \middle| B = b, C = c, A = a, do(C = c')\right)$ If only do-intervention, P(B | do(C = c')) = P(B | C)

But we also know that B=b, C=c, A=a in observed data.

That constrains the value of B'.

=> We need to know the **functional relationships** between A,B,C too.

The counterfactual generation algorithm

SCM: $A = g(C) + \epsilon_1$; $B = f(A, C) + \epsilon_2$

1. Abduction: Infer values of ϵ using observed data.

$$\epsilon_1^* = a - g(c); \epsilon_2^* = b - f(a, c)$$

2. Action: Set C=c'.

3. Prediction: Now propagate the change downstream through graph.

$$a' = g(c') + \epsilon_1^*$$

$$b' = f(a', c') + \epsilon_2^*$$

Root cause attribution: Ranking over counterfactuals

• Using counterfactuals, we can now simulate the effect of different causes for an outcome.

 $P(Y_{X1}), P(Y_{X2}), P(Y_{X3}), \dots$

For attribution, we can rank the counterfactual effect of each cause.

Can also average wrt. the values of all other causes (e.g., using Shapley value)

Challenge: functional form is often unknown. Practical usecase in attributing outcomes of a ML model.

Example: Consider a classification ML model over face images

- Let's say there is a trained binary classification model using the image.
- It outputs class=1 for image 1. Why?
 - We may look at important features through ML explanation models like LIME, SHAP etc.
 - But those do not tell us how the model will behave if we change the input.

How to generate a counterfactual for a ML model

Tabular data: Simply change the input name.

Image data: Need an encoder-generator architecture.

$$z = E(x, a);$$
 Counterfactual_(A=a') = $G(z, a')$

Train using Adversarially Learnt Inference [Dumoulin et al. 2016]

 $\min_{G,E} \max_{D} V(G,E,D) = E[\log(D(x,E(x,a),a)] + E[1 - D(G(z,a),z,a]]$

Sandra Bauer

Meryem Öztürk

Microsoft

Meryem Öztürk

Meryem Öztürk

Evaluating a ML classifier on a Face dataset

CelebA dataset (Photos with 40 attributes like hair color, skin color, etc.)

Generate counterfactuals for each image.

Given a CNN classifier for one of the attributes ("attractiveness"), trained using standard loss minimization.

- **Explain:** Which attributes are considered important for prediction?
- **Fairness:** Is it fair wrt. certain attributes (*pale skin* attribute)?

Fairness:

Bias wrt. different features $P\left(f\left(X_{A_{i}=a'}\right) = 1, f(X) = 0\right)$ $- P\left(f\left(X_{A_{i}=a'}\right) = 0, f(X) = 1\right)$

	$\mathbf{p}(a_r \neq a_c)$	$p(0 \rightarrow 1)$	bias
Horizontal_Flip	0.071	0.496	0.000
Brightness	0.137	0.619	0.033
black_h	0.067	0.838	0.045
black_h, pale	0.177	0.996	0.175
blond_h	0.090	0.115	- 0.069
blond_h, pale	0.095	0.773	0.052
brown_h	0.057	0.877	0.043
brown_h, pale	0.165	0.999	0.165
bangs	0.084	0.845	0.058

52

Third key application for causal ML: **Out-of-distribution generalization**

Domain generalization

Multiple domains: Assume access to data from multiple distributions

- Learn invariant patterns across the different sources
 - Invariant Risk Minimization (Arjovsky et al., 2019)
 - (Krueger et al. 2020, Ganin et al. 2016, Gulrajani & Lopez-Paz 2021, Nam et al. 2021)

Group generalization

Single domain: Assume access to group attributes for each input

- Equalize accuracy across groups/maximize worst-group accuracy
 - Group-DRO (Sagawa et al., 2020), (Ahmed et al. 2021)

Ye et al., OoD-Bench, CVPR 2022

0.2 0.4 Correlation shift

	Tra	Test		
	0.9	0.8	0.1	
Y=0	<u>ч</u>	70	5	
Y=1	9	19	<mark>و</mark> م	

Ye et al., OoD-Bench, CVPR 2022

Colored MNIST

Ye et al., OoD-Bench, CVPR 2022

Algorithm	PACS	OfficeHome	TerraInc	Camelyon	Ranking score
MMD [42]	$81.7\pm0.2^{\uparrow}$	$63.8\pm0.1^{\uparrow}$	$38.3\pm0.4^{\downarrow}$	$94.9\pm0.4^{\uparrow}$	+2
ERM [69]	81.5 ± 0.0	63.3 ± 0.2	42.6 ± 0.9	94.7 ± 0.1	0
VREx [38]	$81.8\pm0.1^{\uparrow}$	63.5 ± 0.1	$40.7\pm0.7^{\downarrow}$	$94.1\pm0.3^{\downarrow}$	-1
GroupDRO [63]	$80.4\pm0.3^{\downarrow}$	63.2 ± 0.2	$36.8\pm1.1^\downarrow$	$95.2\pm0.2^{\uparrow}$	-1

No method can surpass ERM on all kinds of shifts!

Algorithm	Colored MNIST	CelebA	NICO	Prev score	Ranking	score
VREx [38]	$56.3 \pm 1.9^{\uparrow}$	87.3 ± 0.2	71.0 ± 1.3	-1		+1
GroupDRO [63]	$32.5\pm0.2^{\uparrow}$	87.5 ± 1.1	71.8 ± 0.8	-1		+1
ERM [69]	29.9 ± 0.9	87.2 ± 0.6	71.4 ± 1.3	0		0
MMD [42]	$50.7\pm0.1^{\uparrow}$	$86.0\pm0.5^{\downarrow}$	$68.3 \pm 1.0^{\downarrow}$	+2		-1

IID

[Correlation Shift]

Spurious correlation b/w category and lighting

[Diversity Shift]

Unseen data shift unseen azimuth values

Best methods are not consistent over different datasets and shifts

Wiles et al., ICLR 2022

What if different distribution shifts co-exist?

		Train		Т	est
Satellite Image (x)					
Year / Region (d)	2002 / Americas	2009 / Africa	2012 / Europe	2016 / Americas	2017 / Africa
Building / Land Type (y)	shopping mall	multi-unit residential	road bridge	recreational facility	educational institution

Koh et al., WILDS, ICML 2021

What if different distribution shifts co-exist?

Accuracy decreases further for all algorithms.

Algorithm	Color	Rotation	Col+Rot
ERM	30.9 ± 1.6	61.9 ± 0.5	25.2 ± 1.3
IRM	50.0 ± 0.1	61.2 ± 0.3	39.6 ± 6.7
MMD	29.7 ± 1.8	62.2 ± 0.5	24.1 ± 0.6
C-MMD	29.4 ± 0.2	62.3 ± 0.4	32.2 ± 7.0

I. Causal reasoning can explain this failure

[single shift] Explain results from causal perspective

- Different distribution shifts arise due to differences in datagenerating process (DGP)
 - Leading to different independence constraints
- No single independence constraint can work for all shifts

II. Causal reasoning can provide a better algorithm

[single shift] Explain results from causal perspective

- Different distribution shifts arise due to differences in datagenerating process (DGP)
 - Leading to different independence constraints
- No single independence constraint can work for all shifts

[multi-shift] Can we develop an algorithm that generalizes to individual as well as multi-attribute shifts?

• We propose *Causally Adaptive Constraint Minimization (CACM)* to model the causal relationships in DGP

Observed variables X, Y

Observed variables X, YCausal features X_c

Observed variables X, YCausal features X_c Attributes $A_{ind}, A_{\overline{ind}}, E$ st $A_{ind} \cup A_{\overline{ind}} \cup \{E\} = A$

Causal DAG to specify multiattribute shifts

Different $Y - A_{\overline{ind}}$ relationships

Causal DAG to specify multiattribute shifts

Different $Y - A_{\overline{ind}}$ relationships

Causal DAG to specify multiattribute shifts

Different $Y - A_{\overline{ind}}$ relationships

Back to the MNIST example

Acause

 $(A_{\overline{ind}})$

Col+Rot (0.1,90°) (0.9,15°) (0.8,60°) 53 Y=0 0 06 4 Y=1

Causal + Independent Acause ∪ A_{ind}
Generalization to multi-attribute shifts

Algorithm	Color	Rotation	Col+Rot
ERM	30.9 ± 1.6	61.9 ± 0.5	25.2 ± 1.3
IRM	50.0 ± 0.1	61.2 ± 0.3	39.6 ± 6.7
MMD	29.7 ± 1.8	62.2 ± 0.5	24.1 ± 0.6
C-MMD	29.4 ± 0.2	62.3 ± 0.4	32.2 ± 7.0
CACM	70.4 ± 0.5	62.4 ± 0.4	54.1 ± 0.3

CACM outperforms on individual as well as combination of shifts

The CACM Approach

Identifying the correct regularizer under multi-attribute shifts

The CACM Approach

Identifying the correct regularizer under multi-attribute shifts

- I. Derive correct independence constraints for X_c based on causal graph
- II. Apply the constraints as regularizer to standard ERM loss.

Predictor $g(\mathbf{x}) = g_1(\phi(\mathbf{x}))$

Representation ϕ should follow same conditional independence constraints as X_c

Mahajan et al., ICML 2021; Veitch et al., NeurIPS 2021; Makar et al., AISTATS 2022

Predictor $g(\mathbf{x}) = g_1(\phi(\mathbf{x}))$

Representation ϕ should follow same conditional independence constraints as X_c

Proposition 3.1. Given a dataset $(x_i, a_i, y_i)_{i=1}^n$ and a causal DAG over $\langle X_c, X, A, Y \rangle$ such that X_c is the only variable (or set of variables) that causes Y and is not independent of X, then the conditional independence constraints satisfied by X_c are necessary for a risk-invariant predictor.

Different Y $-A_{\overline{ind}}$ relationships lead to different constraints

Causal

 $X_c \perp \perp A_{cause} \mid Y, E \checkmark$ $X_{c} \perp \perp A_{cause} \mid E \not \succ$

Confounded

 $X_c \perp \perp A_{conf} \mid Y, E \not$ $X_c \perp \perp A_{conf} \mid E \checkmark$

Step II: Applying regularization penalty

Constraint: $X_c \perp \perp A_{cause} \mid Y, E \quad [Causal shift]$

$$RegPenalty_{A_{cause}} = \sum_{|E|} \sum_{y \in Y} \sum_{i=1}^{|A_{cause}|} \sum_{j>i} MMD \left(P(g_1(\phi(\mathbf{x})) | a_{i,cause}, y), P(g_1(\phi(\mathbf{x})) | a_{j,cause}, y) \right)$$

$$\boldsymbol{g_1}, \boldsymbol{\phi} = \operatorname{argmin}_{g_1, \phi} L(g_1(\phi(\boldsymbol{x})), \boldsymbol{y}) + \lambda^*(RegPenalty_{A_{cause}})$$

Summary of Session 1

- Causal ML is important whenever we have decision-making or attribution tasks, or want generalizability of predictive model beyond the training distribution.
- Causal graph is the most important assumption.
 - "No causes in, no causes out" Judea Pearl
- The goal is to develop methods that use the least amount of assumptions.
 - E.g., debiased ML for effect estimation
 - Simple, high-level causal graph for images