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Two session series on Causal ML

• Session 1: Intro to causal machine learning
• Estimating causal effect, explaining outcomes, and out-of-distribution 

generalization

• Session 2: Causal machine learning in practice
• PyWhy/DoWhy and the promise of large language models



Session goals: Intro to causal machine learning

• What is the difference between causal and predictive machine 
learning (ML)?
• Side-goal: Learn about causality fundamentals

• When is causal ML useful?

• What can you achieve with causality + ML?
• Looking forward: Take better decisions
• Looking backward: Explain the reasons for observed outcomes
• Improving ML models: Better generalization of ML models



Outline

1. What is causal ML and why do we need it?
1. What can you achieve using causal ML?
2. When is it practically useful compared to predictive ML?

2. Fundamental concepts in causality
1. Interventions and counterfactuals
2. Causal graph

3. Three main applications
1. Choosing the “best” decision for a target outcome
2. Attributing causes for a target outcome
3. Building predictive models that generalize out-of-distribution



Section 1: What is causal ML and 
why do we need it?



When we think of machine learning, we often think 
of predictions: What does the data say?



But there’s an important class of problems 
about decisions: what action should I take?

Which customers should we provide 
discounts to improve sales?

Would this government regulation lead to a 
decrease in air pollution?

Which treatment will have the best 
improvement for a patient?

What is the best way to share an important 
public safety message?



Sometimes, these problems overlap…

• Accurate prediction also means accurate decision-making.

• Prediction task: Does the X-ray image indicate a tumor?
• Decision task: Should we give tumor treatment or not?



But sometimes, they do not

• Prediction task: Predict the customers most likely to churn out.
• Decision task: Who to provide discounts to?

• Discounts may not work on people likely to churn out (low activity)
• May be unnecessary for people with high activity.
• Only need to find the people in the middle, who are undecided.



Reason: Correlation versus causation

• Today’s product usage  can predict tomorrow’s probability of 
churn (not renewing contract).

• But does not tell us anything about effect of discount. 
• Effect could even be zero!

Renew 
contract

Product 
usage

Discount



And often, decision-making requires solving a 
new kind of problem: effect estimation
• Effect estimation: What is the effect of an action on the 

outcome?

Would this government regulation 
lead to a decrease in air pollution?

Q: What is the effect of the regulation 
on air pollution?

What is the best way to share an important 
public safety message?

Q: What is the effect of sharing medium on 
response rate for the safety message?



In effect estimation, the most important task 
is how to avoid being fooled by correlations

Observed data: The response rate of 
text messages is the highest.
Selection bias: Dataset contains 
mostly young people.

Would this government regulation 
lead to a decrease in air pollution?

What is the best way to share an important 
public safety message?

Observed data: In other states, pollution 
decreased after the regulation.
Confounding bias: Other states differ on 
the kind of industries they have.



So, how to solve these problems in a 
systematic way?
Incorporate techniques for learning causality in ML 
models.



Causal ML is about inferring the best actions 
(and the effects of actions in general)

Prediction ML:  
𝑦=h(𝑥)+𝜖

14

< 𝑋, 𝑌 >

ො𝑦 𝛽

Hofman, Sharma, and Watts (2017). Prediction and Explanation in Social Systems. Science,
355.6324

Causal ML:
Τ𝜕𝑓(𝑥, 𝑢) 𝜕𝑥

< 𝑋, 𝑌 >
True: 

𝑦=f(𝑥,u)+𝜖



Three key applications of causal ML:
Better decision-making (what to do next?)

People who do not cycle 

have high cholesterol

People who cycle regularly 

have low cholesterol

Decision: To improve cholesterol levels of the population, should the city 
government invest in programs for encouraging cycling (e.g., giving free bikes)?



Three key applications of causal ML:
Root cause attribution (why did this happen?)

Predicted 
Class

Class: 1

Class: 0

Class: 0

Class: 1

Attribution: Why did the classifier 
predict Class:1 for the first image? 

Attribution: For a given the microservice 
system, why did the latency increase?



Three key applications of causal ML:
Out-of-distribution generalization

Koh et al., WILDS, ICML 2021



Causal ML:
 Machine learning + causality

A necessary ingredient for general-purpose AI

To summarize, 



Section 2: Fundamental concepts in 
causality
(intervention, counterfactual, & causal graph)



Intervention: A formal definition for taking an 
action
Intervention: An active action taken that changes the distribution of a 
variable T.

• Different from observing two different values of T.

Observed data
Cycling (T)={0,0,1}

Interventional data
Cycling (T)={1,0,1}

Intervention



Mathematically represented using the 
do-operator

Observed data
Cycling (T)={0,0,1}

Interventional data
Cycling (T)={1,0,1}

Intervention

𝑷 𝑯𝒆𝒂𝒍𝒕𝒉 𝑪𝒚𝒄𝒍𝒊𝒏𝒈, 𝑨𝒈𝒆, 𝑪𝒐𝒍𝒐𝒓)
𝑷∗ 𝑯𝒆𝒂𝒍𝒕𝒉 𝑪𝒚𝒄𝒍𝒊𝒏𝒈, 𝑨𝒈𝒆, 𝑪𝒐𝒍𝒐𝒓)

=𝑷(𝑯𝒆𝒂𝒍𝒕𝒉|𝒅𝒐 𝑪𝒚𝒄𝒍𝒊𝒏𝒈 , 𝑨𝒈𝒆, 𝑪𝒐𝒍𝒐𝒓)



Important: A  do-intervention affects only the 
desired variable, keeping everything else fixed

Observed data 1
Cycling (T)={0,0,1}

Observed data 2
Cycling (T)={1,0,1}

Not an 
Intervention

𝑷 𝑯𝒆𝒂𝒍𝒕𝒉 𝑪𝒚𝒄𝒍𝒊𝒏𝒈, 𝑨𝒈𝒆, 𝑪𝒐𝒍𝒐𝒓)
𝑷∗ 𝑯𝒆𝒂𝒍𝒕𝒉 𝑪𝒚𝒄𝒍𝒊𝒏𝒈, 𝑨𝒈𝒆, 𝑪𝒐𝒍𝒐𝒓)

!=𝑷(𝑯𝒆𝒂𝒍𝒕𝒉|𝒅𝒐 𝑪𝒚𝒄𝒍𝒊𝒏𝒈 , 𝑨𝒈𝒆, 𝑪𝒐𝒍𝒐𝒓)



Second important concept: counterfactual
(What would have happened if)

Real World 
 

Counterfactual  World 
 

Intervention

𝑯𝒆𝒂𝒍𝒕𝒉𝒕 𝑯𝒆𝒂𝒍𝒕𝒉𝒕+𝟏

Intervention

𝑯𝒆𝒂𝒍𝒕𝒉𝒕 ?



Counterfactual: Complicated to express formally, 
but intuitive to grasp

𝑷 𝑯𝒆𝒂𝒍𝒕𝒉𝒕+𝟏,𝟎 𝑯𝒆𝒂𝒍𝒕𝒉𝒕+𝟏
∗ , 𝑯𝒆𝒂𝒍𝒕𝒉𝒕

∗, 𝑪𝒚𝒄𝒍𝒆𝒕+𝟏 = 𝟏, 𝒅𝒐 𝑪𝒚𝒄𝒍𝒆𝒕+𝟏 = 𝟎

Given that person started cycling and improved their health, what would 
have happened to their health if they did not start cycling, 
but everything else remained the same?



Now we are ready to define the causal effect 
of a variable

Definition: X causes Y iff 
 changing X leads to a change in Y, 
 keeping everything else constant.

The causal effect is the magnitude by which Y is changed by a unit change in 
X.

𝑃 𝑌 𝑑𝑜(𝑋 = 1 ) − 𝑃(𝑌|𝑑𝑜 𝑋 = 0 )
Real World 

 -
Counterfactual  World 

 



As we will see, the key problem is that one of 
the terms is never observed in data

𝑃 𝑌 𝑑𝑜(𝑋 = 1 ) − 𝑃 𝑌 𝑑𝑜(𝑋 = 0)

= 𝑃𝑜𝑏𝑠 𝑌 𝑋 = 1 − 𝑃(𝑌|𝑑𝑜(𝑋 = 0))

Predictive ML solves the problem by assuming
𝑃(𝑌|𝑑𝑜(𝑋 = 0)) = 𝑃𝑜𝑏𝑠 (𝑌|𝑋 = 0)

The goal of causal ML is to find a better approximation.



Final concept: Causal graph to encode 
assumptions that help estimate the unseen

• A good graph exposes the key assumptions about how different 
variables affect each other
• 𝐴 → 𝐵 or 𝐵 → 𝐴?

Health

Age

Cycling Renew 
contract

Product 
usage

Discount

Other 
Attributes



Failure case: What can happen without 
causal assumptions?

http://www.tylervigen.com/spurious-correlations

http://www.tylervigen.com/spurious-correlations


Interpreting a causal graph: d-separation

• Edges encode mechanisms
• direct causes

• Graph implies conditional 
statistical independences
• E.g., 𝐴 ⫫ 𝐶,  𝐷 ⫫ A | B, …
• Identified by d-separation rules

A

C

B D



Interpreting a causal graph: d-separation

A A A

If conditioned on X If conditioned on X If not conditioned on X

Three kinds of node-edges
Path is “blocked” → path is d-separated

Age

YT

𝑿 = {𝐴𝑔𝑒}



Insight: The assumptions are not the edges 
you create, but the edges you omit
• Assumptions are encoded by missing edges, and direction of 

edges

• Relationships represent stable and independent mechanisms

• It is not always possible to learn a graph from observational data



How to obtain a causal graph?
Use domain knowledge (Example 1)
• Estimating the effect of customer rewards program



How to obtain a causal graph?
Use domain knowledge (Example 2)



Section 3: Applications of causal ML
(decision-making, root cause attribution, 
out-of-distribution generalization)



Decision-making: Given a target outcome, 
which action maximizes the outcome value?
Frame as causal effect estimation problem

𝑃 𝑌 𝑑𝑜 𝐴 = 𝑎1 , 𝑃 𝑌 𝑑𝑜 𝐴 = 𝑎2 , …

Rank the different causal effects
 Choose the action with highest causal effect on outcome.



Randomized “A/B” test: A simple solution if 
you can intervene and create new data 



But what to do if we cannot intervene?

People who do not cycle 

have high cholesterol

People who cycle regularly 

have low cholesterol



Simple Matching: Match data points with the 
same confounders and then compare their 
outcomes
Identify pairs of treated (𝑗) and 
untreated individuals (𝑘) who are 
similar or identical to each other.

Match :=  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑊𝑗 , 𝑊𝑘 < 𝜖

• Paired individuals have almost 
the same confounders. 

   Causal Effect =
     σ 𝑗,𝑘 ∈𝑀𝑎𝑡𝑐ℎ(𝑦𝑗 − 𝑦𝑘)

:

:

:

:

:

:

:

:

:



Challenges of building a good estimator

• Variance: If we have a stringent matching criterion, we may obtain 
very few matches and the estimate will be unreliable.

• Bias: If we relax the matching criterion, we obtain many more 
matches but now the estimate does not capture the target 
estimand. 

• Uneven treatment assignment: If very few people have 
treatment, leads to both high bias and variance. 

Need better methods to navigate the bias-variance 
tradeoff. 



The intuition leads to a popular principle for 
estimating causal effect: backdoor criterion
Backdoor formula

𝑝 𝑌 𝑑𝑜 𝑇 = 

𝑍

𝑝 𝑌 𝑇, 𝑍 𝑝(𝑍)

Where 𝑍 must be a valid adjustment set:
- The set of all parents of 𝑇
- Features identified via backdoor criterion
- Features identified via “towards necessity” criterion

Intuitions:
- The union of all features is not necessarily a valid adjustment set
- Why not always use parents? Sometimes parent features are unobserved



Voila! Effect inference problem reduced to 
estimating conditional expectation 
For common identification strategies using 
adjustment sets, 

𝐸[𝑌|𝑑𝑜 𝑇 = 𝑡 , 𝑊 = 𝑤]= 𝐸 𝑌 𝑇 = 𝑡, 𝑊 = 𝑤
assuming W is a valid adjustment set.

•For binary treatment, 
Causal Effect = 𝐸 𝑌 𝑇 = 1, 𝑊 = 𝑤  − 𝐸 𝑌 𝑇 = 0, 𝑊 = 𝑤

Goal: Estimating conditional probability Y|T=t when all 
confounders W are kept constant. 



Machine learning methods can help find a 
better match for each data point
Synthetic Control: If a good match 
does not exist for a data point, can 
we create it synthetically?
 Learn 𝑦 = 𝑓𝑡=0 𝑤 , 

 𝑦 = 𝑓𝑡=1(𝑤)

Assuming f approximates the true 
relationship between 𝑌 and 𝑊, 

Causal Effect = 


𝑖

𝑡𝑖(𝑦𝑖 − 𝑓𝑡=0(𝑤𝑖)) + (1 − 𝑡𝑖)(𝑓𝑡=1 𝑤𝑖 − 𝑦𝑖)

Confounder (W)
O

ut
co

m
e 

(Y
)

Confounder

T=1

T=0



A better solution: use debiased ML estimator

The standard predictor, 𝑦 = 𝑓 𝑡, 𝑤 + 𝜖

may not provide the right estimate for 𝜕𝑦

𝜕𝑡
.

Debiased-ML [Chernozhukov et al. 2016]: 
• Stage 1: Break down conditional estimation 

into two prediction sub-tasks. 
ො𝑦 = 𝑔 𝑤 + 𝑦
Ƹ𝑡 = ℎ 𝑤 + ǁ𝑡

𝑦 and ǁ𝑡 refer to the unconfounded variation in 𝑌 
and 𝑇 respectively after conditioning on w.
• Stage 2: A final regression of 𝑦 on ǁ𝑡 gives 

the causal effect.
𝑦~ 𝛽 ǁ𝑡 + 𝜖

O
ut

co
m

e 
(Y

)

Confounder (W)

Tr
ea

tm
en

t (
T)

Confounder 
(W)

Residual Treatment ( ෨𝑇)Re
si

du
al

 O
ut

co
m

e 
(෨ 𝑌

)



Second key application for causal ML:
Root cause attribution

Causal effect can be identified with the just 
the graph structure.
• Effect of A on B: 𝑃 𝐵 𝑑𝑜 𝐴 = σ𝑐 𝑃 𝐵 𝐴, 𝐶 𝑃(𝐶)

For attribution, need to estimate the 
counterfactual.
Q: Given that 𝐵 = 𝑏 and 𝐶 = 𝑐, how would B 
change if C was changed?

𝑃(𝐵𝑐′ |𝐵 = 𝑏, 𝐶 = 𝑐, 𝐴 = 𝑎, 𝑑𝑜(𝐶 = 𝑐′))

A

C

B D



Second key application for causal ML:
Root cause attribution

Q: Given that 𝐵 = 𝑏 and 𝐶 = 𝑐, how would B 
change if C was changed?

𝑃 𝐵𝑐′ 𝐵 = 𝑏, 𝐶 = 𝑐, 𝐴 = 𝑎, 𝑑𝑜 𝐶 = 𝑐′

If only do-intervention, 
𝑃 𝐵 𝑑𝑜 𝐶 = 𝑐′ = 𝑃(𝐵|𝐶) 

But we also know that B=b, C=c, A=a in 
observed data. 

That constrains the value of B’.

=> We need to know the functional 
relationships between A,B,C too.

A

C

B D



The counterfactual generation algorithm

SCM: 𝐴 = 𝑔 𝐶 + 𝜖1;  𝐵 = 𝑓 𝐴, 𝐶 + 𝜖2

1. Abduction: Infer values of 𝝐 using 
observed data.

𝜖1
∗ = 𝑎 − 𝑔 𝑐 ; 𝜖2

∗ = 𝑏 − 𝑓 𝑎, 𝑐

2. Action: Set C=c’.
3. Prediction: Now propagate the 
change downstream through graph.
                       𝑎′ = 𝑔 𝑐′ + 𝜖1

∗

 𝑏′= 𝑓 𝑎′, 𝑐′ + 𝜖2
∗

A

C

B D



Root cause attribution: Ranking over 
counterfactuals
• Using counterfactuals, we can now simulate the effect of different causes 

for an outcome. 
𝑃 𝑌𝑋1 , 𝑃 𝑌𝑋2 , 𝑃 𝑌𝑋3 ,…

For attribution, we can rank the counterfactual effect of each cause.

Can also average wrt. the values of all other causes 
(e.g., using Shapley value)

Challenge: functional form is often unknown. 
Practical usecase in attributing outcomes of a ML model.



Example: Consider a classification ML model 
over face images

• Let’s say there is a trained binary classification model using the image.
• It outputs class=1 for image 1. Why?

• We may look at important features through ML explanation models like LIME, 
SHAP etc. 

• But those do not tell us how the model will behave if we change the input.



How to generate a counterfactual for a ML model

Tabular data: Simply change the input name.

ENCODER GENERATOR
X

A

𝑋

Train using Adversarially Learnt Inference [Dumoulin et al. 
2016]

min
𝐺,𝐸

max
𝐷

𝑉 𝐺, 𝐸, 𝐷 = 𝐸[log 𝐷 𝑥, 𝐸 𝑥, 𝑎 , 𝑎 + 𝐸[1 − 𝐷(𝐺 𝑧, 𝑎 , 𝑧, 𝑎]

Z

Image data: Need an encoder-generator architecture. 

𝑧 = 𝐸 𝑥, 𝑎 ; Counterfactual(A=a’) = 𝐺(𝑧, 𝑎′)

50



Evaluating a ML classifier on a Face dataset

CelebA dataset (Photos with 40 
attributes like hair color, skin color, etc.)

Generate counterfactuals for each 
image.

Given a CNN classifier for one of the 
attributes (“attractiveness”), trained 
using standard loss minimization.

• Explain: Which attributes are 
considered important for prediction?

• Fairness: Is it fair wrt. certain attributes 
(pale skin attribute)? 

51



Explain: 
Feature 
importance scores

 𝑓 𝑋𝐴𝑖=𝑎′ − 𝑓 𝑋

Fairness:
Bias wrt. different features

P 𝑓 𝑋𝐴𝑖=𝑎′ = 1, 𝑓 𝑋 = 0

− P 𝑓 𝑋𝐴𝑖=𝑎′ = 0, 𝑓 𝑋 = 1

52



Third key application for causal ML:
Out-of-distribution generalization 
Domain generalization
Multiple domains: Assume access to data from multiple distributions
• Learn invariant patterns across the different sources

• Invariant Risk Minimization (Arjovsky et al., 2019)
• (Krueger et al. 2020, Ganin et al. 2016, Gulrajani & Lopez-Paz 2021, Nam et al. 2021)

Group generalization
Single domain: Assume access to group attributes for each input
• Equalize accuracy across groups/maximize worst-group accuracy

• Group-DRO (Sagawa et al., 2020), (Ahmed et al. 2021)



Ye et al., OoD-Bench, CVPR 2022

Sobering state of SoTA algorithms



Train Test
15° 60° 90°

Y=0

Y=1

Sobering state of SoTA algorithms

Ye et al., OoD-Bench, CVPR 2022

Rotated MNIST



Train Test
15° 60° 90°

Y=0

Y=1

Rotated MNIST

Train Test
0.9 0.8 0.1

Y=0

Y=1

Colored MNIST

Sobering state of SoTA algorithms

Ye et al., OoD-Bench, CVPR 2022



Sobering state of SoTA algorithms

Ye et al., OoD-Bench, CVPR 2022



No method can surpass ERM on all kinds of shifts!

Sobering state of SoTA algorithms

Ye et al., OoD-Bench, CVPR 2022



Wiles et al., ICLR 2022

IID Spurious correlation 
b/w category and lighting

Unseen data shift
unseen azimuth values

Sobering state of SoTA algorithms

Best methods are not consistent over different datasets and shifts

[Correlation Shift]               [Diversity Shift]



What if different distribution shifts co-exist?

Train Test
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Koh et al., WILDS, ICML 2021
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(0.9,15°) (0.8,60°) (0.1,90°)

Y=0

Y=1

What if different distribution shifts co-exist?

Accuracy decreases further 
for all algorithms.

C
o

l+
R

o
t

Train Test
0.9 0.8 0.1

Y=0

Y=1

Train Test
15° 60° 90°

Y=0

Y=1

+

Algorithm Color Rotation Col+Rot

ERM 30.9 ± 1.6 61.9 ± 0.5 25.2 ± 1.3

IRM 50.0 ± 0.1 61.2 ± 0.3 39.6 ± 6.7

MMD 29.7 ± 1.8 62.2 ± 0.5 24.1 ± 0.6

C-MMD 29.4 ± 0.2 62.3 ± 0.4 32.2 ± 7.0



[single shift] Explain results from causal perspective
• Different distribution shifts arise due to differences in data-

generating process (DGP)
• Leading to different independence constraints

• No single independence constraint can work for all shifts

I. Causal reasoning can explain this failure



[single shift] Explain results from causal perspective
• Different distribution shifts arise due to differences in data-

generating process (DGP)
• Leading to different independence constraints

• No single independence constraint can work for all shifts

[multi-shift] Can we develop an algorithm that generalizes to individual 
as well as multi-attribute shifts?

• We propose Causally Adaptive Constraint Minimization (CACM) to 
model the causal relationships in DGP

II. Causal reasoning can provide
 a better algorithm



Causal DAG to specify multi-attribute shifts

Representation of shifts using causal graph



Causal DAG to specify multi-attribute shifts

Representation of shifts using causal graph

Observed variables 𝑿, 𝑌

      



Causal DAG to specify multi-attribute shifts

Representation of shifts using causal graph

Observed variables 𝑿, 𝑌

Causal features 𝑿𝒄

      



Causal DAG to specify multi-attribute shifts

Representation of shifts using causal graph

Observed variables 𝑿, 𝑌

Causal features 𝑿𝒄

Attributes 𝑨𝒊𝒏𝒅, 𝑨𝒊𝒏𝒅, 𝐸 st 𝑨𝒊𝒏𝒅 ∪ 𝑨𝒊𝒏𝒅  ∪ {𝐸} = 𝑨

      



Causal DAG to specify multi-attribute shifts

Representation of shifts using causal graph

Observed variables 𝑿, 𝑌

Causal features 𝑿𝒄

Attributes 𝑨𝒊𝒏𝒅, 𝑨𝒊𝒏𝒅, 𝐸 st 𝑨𝒊𝒏𝒅 ∪ 𝑨𝒊𝒏𝒅  ∪ {𝐸} = 𝑨

      independent 
of label

correlated 
with label

domain 
attribute

Correlation Shift

Diversity Shift



Causal DAG to specify multi-
attribute shifts

Different 𝑌 − 𝑨𝒊𝒏𝒅 relationships

Representation of shifts using causal graph



Causal DAG to specify multi-
attribute shifts

Different 𝑌 − 𝑨𝒊𝒏𝒅 relationships

Independent

Representation of shifts using causal graph

Causal



Causal DAG to specify multi-
attribute shifts

Causal

Confounded

Different 𝑌 − 𝑨𝒊𝒏𝒅 relationships

Independent
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Causal DAG to specify multi-
attribute shifts

Different 𝑌 − 𝑨𝒊𝒏𝒅 relationships

Confounded

Selected

Independent

Representation of shifts using causal graph

Causal
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Back to the MNIST example
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Causal + Independent
+

𝑨𝒄𝒂𝒖𝒔𝒆 

(𝑨𝒊𝒏𝒅)

𝑨𝒊𝒏𝒅 

𝑨𝒄𝒂𝒖𝒔𝒆 ∪  𝑨𝒊𝒏𝒅 



Algorithm Color Rotation Col+Rot

ERM 30.9 ± 1.6 61.9 ± 0.5 25.2 ± 1.3

IRM 50.0 ± 0.1 61.2 ± 0.3 39.6 ± 6.7

MMD 29.7 ± 1.8 62.2 ± 0.5 24.1 ± 0.6

C-MMD 29.4 ± 0.2 62.3 ± 0.4 32.2 ± 7.0

CACM 70.4 ± 0.5 62.4 ± 0.4 54.1 ± 0.3

CACM outperforms on individual as well as combination of shifts

Generalization to multi-attribute shifts



The CACM Approach

Identifying the correct regularizer under multi-attribute shifts



The CACM Approach

Identifying the correct regularizer under multi-attribute shifts

I. Derive correct independence constraints for 𝑿𝒄 based on causal graph

II. Apply the constraints as regularizer to standard ERM loss.



Predictor 𝑔 𝒙 = 𝑔1(𝜙(𝒙))

Representation 𝜙 should follow same conditional independence constraints as 𝑿𝒄

Mahajan et al., ICML 2021; Veitch et al., NeurIPS 2021; Makar et al., AISTATS 2022

Step I: Deriving independence constraints



Predictor 𝑔 𝒙 = 𝑔1(𝜙(𝒙))

Representation 𝜙 should follow same conditional independence constraints as 𝑿𝒄

Proposition 3.1. Given a dataset 𝒙𝑖 , 𝒂𝑖 , 𝑦𝑖 𝑖=1
𝑛  and a causal DAG over ⟨ 𝑿𝒄, 𝑿, 𝑨, 𝑌 ⟩ 

such that 𝑿𝒄 
is the only variable (or set of variables) that causes 𝑌 and is not 

independent of 𝑿, then the conditional independence constraints satisfied by 𝑿𝒄 
are necessary for a risk-invariant predictor.

Step I: Deriving independence constraints



Different 𝑌 − 𝑨𝒊𝒏𝒅 relationships lead to different constraints

Step I: Deriving independence constraints

Causal Confounded



𝑿𝒄 ⊥⊥ 𝑨𝒄𝒂𝒖𝒔𝒆 | 𝑌, 𝐸
𝑿𝒄 ⊥⊥ 𝑨𝒄𝒂𝒖𝒔𝒆 | 𝐸

𝑿𝒄 ⊥⊥ 𝑨𝒄𝒐𝒏𝒇 | 𝑌, 𝐸

𝑿𝒄 ⊥⊥ 𝑨𝒄𝒐𝒏𝒇 | 𝐸

Step I: Deriving independence constraints

Causal Confounded



Constraint: 𝑿𝒄 ⊥⊥ 𝑨𝒄𝒂𝒖𝒔𝒆 | 𝑌, 𝐸       [Causal shift]

𝑅𝑒𝑔𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑨
𝒄𝒂𝒖𝒔𝒆

= 

𝐸



𝑦∈𝑌



𝑖=1

𝑨𝒄𝒂𝒖𝒔𝒆



𝑗>𝑖

MMD 𝑃 𝑔1 𝜙(𝒙 ) 𝑎𝑖,𝑐𝑎𝑢𝑠𝑒 , 𝑦 , 𝑃 𝑔1 𝜙(𝒙 ) 𝑎𝑗,𝑐𝑎𝑢𝑠𝑒 , 𝑦

Step II: Applying regularization penalty

𝒈𝟏, 𝝓 = argmin𝑔1,𝜙 L 𝑔1 𝜙 𝒙 , 𝑦 + 𝜆∗ 𝑅𝑒𝑔𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑨
𝒄𝒂𝒖𝒔𝒆



Summary of Session 1

• Causal ML is important whenever we have decision-making or 
attribution tasks, or want generalizability of predictive model 
beyond the training distribution.

• Causal graph is the most important assumption. 
• “No causes in, no causes out” – Judea Pearl

• The goal is to develop methods that use the least amount of 
assumptions. 
• E.g., debiased ML for effect estimation
• Simple, high-level causal graph for images
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