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True: y=f(x,u)+e

Prediction ML: Causal inference:
y=h(x)+e of (x,u)/0x

s

Hofman, Sharma, and Watts (2017). Prediction and Explanation in Social Systems. Science, 355.6324
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* Better Generalization &
Robustness of ML models

* Principled framework for
Fairness and Explanation
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Key message: Causal reasoning is essential for
machine learning

* Machine learning faces many fundamental challenges
* Out of distribution generalization, Robustness, Fairness, Explainability, Privacy

* A causal perspective can help
» Better definitions of the challenges
* Theoretically justified algorithms

e “Matching” for out-of-distribution prediction
e “Counterfactuals” for explainable predictions

e “Missing data” for fairness
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Correlational machine learning
searches for patterns.
Often finds spurious ones
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Accuracy on unseen angles (0, 90): 64%

[Piratla et al. ICML 2020]

What color is the tray? Pink
What colour is the tray?  Green

# Which color is the tray?  Green

y What color is it? Green
- * How color is tray? Green

Fooled by semantically equivalent perturbations

[Ribeiro et al. ACL 2018]

Stop Dumb-bell
- -

Incorrect predictions under changes in data
[Alcorn et al. CVPR 2019]

women’s

women'’s chess club
captain

executed

captured

Bias in ML model for hiring decisions
[Reuters 2018, Weblink]


https://www.reuters.com/article/us-amazon-com-jobs-automation-insight-idUSKCN1MK08G

1. OOD generalization is a causal
oroblem.

Domain Generalization using Causal Matching. ICML 2021.
Alleviating Privacy Attacks using Causal Learning. ICML 2020.

Causal Regularization using Domain Priors. Arxiv.



True: y=f(x,u)+e

Prediction ML:
y=h(x)+e

Hofman, Sharma, and Watts (2017). Prediction and Explanation in Social Systems. Science, 355.6324



True: y=f(x,u)+€
Prediction ML:

=h(x)+€ - - icti
y ( ) © Train: P(X. Y, U) Typical super\{lsed prt/e\d;ctlon
Test: P(X, Y, U) min(y — )

Use cross-validation to select model.
No need to worry about u.

Out-of-distribution prediction:
min(y — 9)*

P* is not observed.

Cross-validation is not possible.

Train: P(X, Y, U)
Test: P*(X, Y, U)

Hofman, Sharma, and Watts (2017). Prediction and Explanation in Social Systems. Science, 355.6324



Invariant causal learning: If you learn the causal
function from X->Y, your model will be optimal
across all unseen distributions.

Peters et al. (2015), Arjovsky et al. (2019)



Where's the catch? Learning causal models

Disease
Severity
Structural Approach:

Create a causal graph
based on external

knowledge.

h(x:) will lead to Blood Pressurefi=>

similar accuracy on both  Djsease Severity 1
domains.

Multiple Domains Constraints Approach:
Approach: Find features ldentify the constraints
whose effect stays invariant that any causal model
across many domains. should satisfy.



. Learning using causal structure

A dataset of people living with a chronic illness.

<Y:disease severity> <X:age, gender, blood pressure, heart
rate>

Associational ML:  min 2. (x,y) Loss(h(x),y)



. Learning using causal structure @ @
Weight % : Age

A dataset of people living with a chronic illness.

<Y:disease severity> <X:age, gender, blood pressure, heart
rate>

Associational ML: min 2. (x,y) Loss(h(x),y) Pressure

(Ideal) Causal learning:

1. Identify which features directly cause the outcome (parents
of Y in the causal graph).

Disease
Severity

2. Build a predictive model using only those features.

Causal ML: mhin 2 (x,y) Loss(h(x¢), y)

Xc = Xpp = {heart rate, blood pressure}
Lower train accuracy but stays consistent with new domains.



Why only parents of Y in the causal graph?

X5y X5y
Xso+ > on New Domain  Xso/ > oa

EEE——)
@ (Covariate Shift)
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P(X,Y) P*(X,Y)
= P(X)P(Y|X) = P*(X)P(Y|X)

X5y



Why only parents of Y in the causal graph?

X5y X5y
s vewbomain  Xso e
v

X
P 4

@ (Concept Drift)
Xen Xen

P(X,Y) P*(X,Y)
= P(X)P(Y|X) = P(X)P*(Y|X)



Why only parents of Y in the causal graph?

/"@ @
/@ ) Any Intervention @ @
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P(Y|Xp,) is invariant across different distributions, unless there is a
change in true data-generating process for Y.



Any other benefits?

* Result 1: Better out-of-distribution generalization
* Result 2: Stronger differential privacy guarantees

Theorem: When equivalent Laplace noise is added and models are trained on same

dataset, causal mechanism M. provides €.--DP and associational mechanism M,
provides €,-DP guarantees such that:

Causal models are more robust to privacy attacks like membership
inference.

Alleviating Privacy Attacks using Causal Learning. ICML 2020.



Result 1: Worst-case out-of-distribution error of a
causal model is lower than an associational model.

For any model h, and P* such that P*(Y|Xp,) = P(Y|Xp,4),
In-Distribution Error (IDE)= IDEp(h,y) = Lp(h,y) — Ls_p(h,y)

Expected loss on the same distribution as the train data
Out-of-Distribution Error (ODE)=0ODEp p:(h,y) = Lp:(h,y) — Lg_p(h,y)

Expected loss on a different distribution P* than the train data



Result 1: Worst-case out-of-distribution error of a
causal model is lower than an associational model.

For any model h, and P* such that P*(Y|Xp,) = P(Y|Xp,),
In-Distribution Error (IDE)= IDEp(h,y) = Lp(h,y) — Ls_p(h,y)

Expected loss on the same distribution as the train data
Out-of-Distribution Error (ODE)=0ODEp p:(h,y) = Lp:(h,y) — Lg_p(h,y)

Expected loss on a different distribution P* than the train data Discrepancy
b/w P and P*
Simple case: Assume y = f(x) is deterministic. distributions

Causal Model ODEp p<(h¢,y) < IDEp(h,,y) + discy (P, P")



Result 1: Worst-case out-of-distribution error of a
causal model is lower than an associational model.

For any model h, and P* such that P*(Y|Xp,) = P(Y|Xp,),
In-Distribution Error (IDE)= IDEp(h,y) = Lp(h,y) — Ls_p(h,y)
Expected loss on the same distribution as the train data
Out-of-Distribution Error (ODE)=0ODEp p:(h,y) = Lp:(h,y) — Lg_p(h,y)
Expected loss on a different distribution P* than the train data Discrepancy

b/w P and P*
distributions

Assoc. Model ODEP,P* (ha; Y) = IDEP(haJ J’) + diSCL(PJ P*) + LP* (hOPT’ y) el oPtlmaI on P

Simple case: Assume y = f(x) is deterministic.

= max ODEBoundpp:(h.,y) < max ODEBoundp p-(h,, y)



Result 2: A causal model has stronger differential
privacy guarantees than associational model

How much do trained model parameters change based on changing one data point?

Differential Privacy [DR’14]: A learning mechanism M satisfies e-differential privacy
Pr(M(S)€EH) < o€

Pr(M(S")eH) =

if for any two datasets, S, S’ that differ in one data point,

(Smaller € values provide better privacy guarantees)

Theorem: When equivalent Laplace noise is added and models are trained on same
dataset, causal mechanism M. provides €.--DP and associational mechanism M,
provides €,-DP guarantees such that:

€. < €



Result 3: Causal models are more robust to
membership inference (M) attacks

Advantage of an Ml adversary: (roughly) Given black-box access to ML
model, accuracy of detecting if an input belongs to the training data.

[From Yeom et al. CSF'18] Membership advantage of an adversary is
bounded by e€ — 1.

Theorem: When trained on the same dataset of size n, membership

advantage of a causal model is lower than the membership advantage for an
associational model.



Summary: Causal predictive models offer
better accuracy and privacy.

So why is everyone not using it?

Same problem as for causal inference: Rare to have an outcome
variable where all parents are observed.

Can methods from causal inference also be used to solve it?



Where's the catch? Learning causal models

Disease
Severity
Structural Approach:

Create a causal graph
based on external

knowledge.

h(x:) will lead to Blood Pressure¥=>

similar accuracy on both Dijsease Severityf
domains.

Multiple Domains Constraints Approach:
Approach: Find features |dentify the constraints
whose effect stays invariant that any causal model
across many domains. should satisfy.



Leveraging data from multiple domains

TRAIN DATASET TEST DATASET

TRAIN DATASET TEST DATASET

o ST oy la o



Representation
Learning

>

4
Need to ensure that pair of images exactly match on shape features,

but vary on color (i.e., confounder)

Difference from causal inference: Matching for same causal features,
rather than same confounders

Data augmentation in ML



How it works?

Observed  Unobserved May or may not
be observed



How it works?

Different colors

Goal: Learn E(Y|X,)
But X.is not observed. Latentshape

features

Image

So match two images having the
same X, and enforce them to have |
the same representation. @ L abel

fperfectma‘cch — arg mm E Ld Y)

Observed Unobserved May or may not
be observed

s.t. Z dist(q>(x§.d)) o(x\)) =0

Q(5,k)=1;d#d’



How it works?

Different colors

Goal: Learn E(Y|X,)
But X.is not observed. Latentshape

features

Image

So match two images having the
same X, and enforce them to have |

the same representation. @ Label
Xcll Domain|Object => match inputs from o
the different domains that belong to the same Q Q e
object. Observed  Unobserved May or may not

be observed
Aside: Many prior works on domain generalization optimize for the incorrect objective
* “Domain Invariant Representation” proposes X Il Domain
* “Class-conditional Domain Invariant Representation” proposes X 1L Domain|Y



Leveraging multiple domains: Can also work if
data augmentations are not available

* |f objects are not known, iteratively
learn matched pairs of inputs from
different domains.

* Assumption: Same-class inputs are
closer in causal features to inputs from
different classes.

 Start with matching random inputs from
the same class.

 Minimize intra-match distance: Find a
feature representation that minimizes the
distance within matches.

* Estimate matches: Update matches based
on the new representation and repeat.

Algorithm 1: MatchDG

Input: Dataset (d;, x;, y;)"_, from m
domains, 7, t

Output: Function f : X — )V

Create random match pairs (2y-.

Build a n x m data matrix M.

Phase 1. while notconverged do

for batch ~ M do
| Minimize contrastive loss (6).

if epoch % t ==0 then
L Update match pairs using
(I)epoch,-

Phase 2. Compute matching based on
¢. Minimize the loss (5) to obtain f.




V. Empirical results: Causal models are more
accurate on unseen rotations of MNIST digits

Dataset | Source ERM ERM-PerfMatch
15, 30, 45.

Rotated | 60,75 96.5 (0.15) 98.5 (0.08)

MNIST |30 45.60 | 80.6(2.9) 93.6 (0.53)
30. 45 64.0 (2.28) 84.2 (2.33)

Rotated ég ‘32 1 785 (1.15) 85.1 (0.97)

Fashion ’

MNIST | 30.45.60 | 33.9(1.04) 61.04 (1.33)
30, 45 21.85 (0.93) 42.0 (2.42)

Test Domain: Images rotated by 0 and 90 degrees.

This method also achieves state-of-the-art accuracy on PACS, the most popular domain generalization
benchmark.



V. Empirical results: Causal models are more
accurate on unseen rotations of MNIST digits

Dataset | Source ERM MASF CSD ERM-RandMatch MatchDG ERM-PerfMatch
15. 30, 45,

Rotated | 60,75 96.5(0.15)  93(0.2)  94.7(0.2) 97.5(0.17)  97.5(036) |  98.5(0.08)

MNIST 30 45.60 | 80.6(2.9) 69.4(1.32) 89.1(0.004) 82.8 (2.3) 88.9(2.01) |  93.6 (0.53)
30, 45 64.0 (2.28) 60.8 (1.53) 772 (0.04) 69.7 (2.93) 79.3 (4.2) 84.2 (2.33)
15. 30, 45,

Rotated | ¢o° s 78.5(1.15) 72.4(2.9)  78.9 (0.7) 80.5(0.97)  835(1.16) |  85.1 (0.97)

Fashion ’

MNIST | 30.45.60 | 33.9(1.04) 25.7(1.73) 27.8(0.01) 355(1.07)  51.7(2.08) | 61.04 (1.33)
30, 45 21.85(093) 20.8(1.26) 202 (0.01) 239(0.93)  36.6(2.17) | 42.0(2.42)

Test Domain: Images rotated by 0 and 90 degrees.

This method also achieves state-of-the-art accuracy on PACS, the most popular domain generalization
benchmark.



2. ML Explanation is a causal
oroblem.

Explaining Machine Learning Classifiers through Counterfactual Examples. FaccT
2020.

Towards Unifying Feature Attribution and Counterfactual Explanations: Different
Means to the Same End. AIES 2021.



Explaining machine learning predictions

Techniques to explain machine predictions

LIME (Ribeiro et al., 2016); Local Rule-based (Guidotti et al., 2018);
SHAP (Lundberg et al., 2017); Intelligible Models (Lou et al., 2012); .....

Feature 1

Feature importance-based methods are Feature 2

widely used in many practical applications Feature 3

Importance score



In many cases, feature importance is not enough

L ted
Bank = Loan distribution algorithm oan srante

m é @n den@

Suppose a person does not get the loan.
Person: What should | do to get the loan in the future?

Feature importance-based explanations Counterfactual explanations (CF)

(“what-if” scenarios) (Wachter et al., 2017)
Annual income

No. of credit accounts You would have got the loan if your

> annual income had been 100,000

Credit years

Importance score



Many explanation scenarios are actually
asking “what-it” or causal questions

“If | change the most important feature according to explanation, will it
change the predicted outcome?”

“What if we change the second most important feature?”

Statistical summaries are not enough.

Require different kind of reasoning -> Causal reasoning
Individual treatment effect of different features



Causal reasoning for explaining machine learning

L ted
Bank =——p Loan distribution algorithm Oan grante

m é @n den@

Counterfactual explanations (CF)
(“what-if” scenarios) (Wachter et al., 2017)

What feature value caused the
prediction?

You would have got the loan if your

How to provide a feature ordering?
annual income had been 100,000



What does it mean to explain an event?

Event = ML model predicts 1.

[Halpern 2016] A feature is an ideal causal explanation iff:
* Necessity: Changing the feature changes model’s prediction.
 Sufficiency: If the feature stays the same, cannot change the model’s
prediction.

* |deal explanations are rare.
f (x1,x2,x3)=1(0.4x1+0.1x2 + 0.1x3 >=0.5)
Given f(1,1,1) = 1,
x1 is necessary.
No feature is sufficient.



But we can quantify degree of necessity or
sufficiency

(x, f(x))

* Necessity = P (f(x) changes | feature is changed)
e Sufficiency = P( f(x) is unchanged | feature is unchanged)

Where these probabilities are over all plausible values of the features.

In practice, approximate by neighborhood of the point x.



Simple algorithm

Necessity: Given (x, f (x)), find necessity of feature x;

e Sample point x’ such that x; is changed while keeping every other
feature constant.

* Calculate P(f(x’) ! = f(x) ) over all such x’

Sufficiency: Given (x, f (x)), find sufficiency of feature x;

* Sample point x’ such that x; is constant while changing all other
features.

* Calculate P(f(x’) == f(x) ) over all such x’



A more efficient approximate algorithm

Necessity: Given (x, f (x)),
* Find the smallest changes to the input x that change the outcome.

* Necessity is proportional to the number of times a feature is changed
to lead to a different outcome.

Sufficiency: Given (x, f(x)),

* Find the smallest changes to the input x that change the outcome,
without changing x;.

e Sufficiency is inversely proportional to the number of times a valid
change is found.



More generally, counterfactual explanations involve an
optimization

Diverse Loss to get Loss to ensure Loss to provide
counterfactual desirable proximity to diverse
explanations outcome original input explanations

! ! 1 !

k

1 A

C(x) = arg minEz yloss(f(c;),y) + %dist(ci,x) — A, dpp_diversity(cq,..,cy)
Ci1,--ck .

=1

dpp_diversity = det(K),
1

k —no. of counterfactuals
A1 and A; —loss-balancing hyperparameters K= 1 +dist(C;, C))




Practical considerations

1
C(x) = arg min—
C1i,- ck k .

l

k
yloss(f(c;),y) +
=1

d Incorporate additional
feasibility properties
a) Sparsity
b) User constraints

d Choice of yloss — hinge loss

J Separate categorical and
continuous distance functions

] Relative scale of mixed features

k

Ao . .
—dist(c;,x) — A,dpp_diversity(cq,..,cy)

Python library
DiCE

(Diverse Counterfactual Explanations)

htt

ps://github.com/interpretml/DiCE



https://github.com/interpretml/DiCE

# Using sklearn backend
m = dice_ml.Model(model=model, backend="sklearn™)
# Using method=random for generating CFs
exp = dice_ml.Dice(d, m, method="random™)

el

el.visualize as_dataframe(show_only changes=True)

exp.generate counterfactuals(x _train[©:1], total CFs=2, desired class="opposite")

Query 1instance (original outcome : 9)

age [ workclass | education | marital_status | occupation [race [gender |hours_per_week |income
0|38 |[Private HS-grad |Married Blue-Collar | White [Male 44 0
Diverse Counterfactual set (new outcome: 1.0)

age |workclass |education [ marital_status | occupation [race |gender |hours_per_week |income
0(67.0]- Masters - - Other | - - 1
1166.0 |- Prof-school | - - Other | - - 1




# Restricting age to be between [20,36] and Education to be either {'Doctorate’, 'Prof-school'}.
e3 = exp.generate_counterfactuals(x_train[©0:1],

total CFs=2,
desired_class="opposite”,

permitted _range={'age':[20,30], 'education':['Doctorate', 'Prof-school’']})
e3.visualize as_dataframe(show only changes=True)

Query instance (original outcome : 9)

age [ workclass | education | marital_status | occupation |race |gender|hours_per_week |income

0 (38 |Private HS-grad |Married Blue-Collar | White | Male 44 0

Diverse Counterfactual set (new outcome: 1.0)

age |workclass education | marital_status | occupation |race | gender | hours_per_week [income

0 [28.0 | Self-Employed | Doctorate |- Professional | - Female | 21.0 1

1127.0 | Self-Employed | Doctorate |- Professional | - Female | 50.0 1




3. Evaluating fairness is a causal
oroblem.

The Importance of Modeling Data Missingness in Algorithmic Fairness: A Causal
Perspective. AAAI 2021

Slides Credit: Naman Goel.



Fair Machine Learning

1. Get a big training dataset, different rows containing observed
outcomes for different feature values.

49



Fair Machine Learning

)}
Outcome
(e.g. loan paid back or not)

Features for different individuals

50



Fair Machine Learning

1. Get a big training dataset, different rows containing observed
outcomes for different feature values.

2. Select an appropriate fairness metric (e.g. equal error rates).

3. Apply state-of-the-art algorithm on this dataset to train a classifier
with fairness constraints.

4. Deploy the trained classifier to make future decisions.

51



Fair Machine Learning |

This common approach, proposed and shown to work on benchmark
datasets in fair machine learning papers, doesn’t work in practice
unfortunately.

There is no guarantee that the supposedly fair classifer will actually
take fair decisions in the real-world.

Reason: Missingness in Training Data.



Missingness in Training Data

D1=1

|I Loan Approved
Loan Applicant 1,

with features X4

Decision- mak\
in the past
e.g. bank

Loan Applicant 2,
with features X,

True outcome observed,
X1,Y; became part of the
training data

?

True outcome never observed,

53



Missingness in Training Data

* Training data, even if it contains objective ground truth outcome and
infinitely many samples, is one-sided due to systematic censoring by
past decisions.



Empirical Implications

(Pleiss et al. 2017) with
FPR Constraints

Train FPRD Test FPRD
COMPAS
Dataset -0.00155 0.061

Difference in Test and Train Fairness of Fair ML Algorithms under Training Data with Missingness

All implementations and respective hyper-parameters settings taken from examples provided in IBM Al Fairness 360 Library



Empirical Implications

(Pleiss et al. 2017) with
FPR Constraints

Train FPRD Test FPRD

COMPAS
Dataset -0.00155 0.061
Train FPRD  Test FPRD
ADULT
Dataset -0.00724 0.0725

Difference in Test and Train Fairness of Fair ML Algorithms under Training Data with Missingness

All implementations and respective hyper-parameters settings taken from examples provided in IBM Al Fairness 360 Library



Empirical Implications

(Pleiss et al. 2017) with | (Pleiss et al. 2017) with
FPR Constraints FNR Constraints

Train FPRD Test FPRD Train FNRD  Test FNRD

COMPAS
Dataset -0.00155 0.061 0.0056 0.099
Train FPRD Test FPRD Train FNRD  Test FNRD
ADULT
Dataset -0.00724 0.0725 0.00295 0.0377

Difference in Test and Train Fairness of Fair ML Algorithms under Training Data with Missingness

All implementations and respective hyper-parameters settings taken from examples provided in IBM Al Fairness 360 Library



Empirical Implications

(Pleiss et al. 2017) with | (Pleiss et al. 2017) with
FPR Constraints FNR Constraints

Train FPRD Test FPRD Train FNRD  Test FNRD

COMPAS
Dataset -0.00155 0.061 0.0056 0.099
Train FPRD Test FPRD Train FNRD  Test FNRD
ADULT
Dataset -0.00724 0.0725 0.00295 0.0377

Kallus and Zhou (2018) made similar observations for
Hardt et al (2016)’s algorithm on NYPD SQF dataset.

Difference in Test and Train Fairness of Fair ML Algorithms under Training Data with Missingness

All implementations and respective hyper-parameters settings taken from examples provided in IBM Al Fairness 360 Library



Empirical Implications

Postprocessing Approach

(Pleiss et al. 2017) with | (Pleiss et al. 2017) with

FPR Constraints FNR Constraints

Train FPRD Test FPRD Train FNRD  Test FNRD

COMPAS
Dataset -0.00155 0.061 0.0056 0.099
Train FPRD Test FPRD Train FNRD  Test FNRD
ADULT
Dataset -0.00724 0.0725 0.00295 0.0377

Kallus and Zhou (2018) made similar observations for
Hardt et al (2016)’s algorithm on NYPD SQF dataset.

Difference in Test and Train Fairness of Fair ML Algorithms under Training Data with Missingness

All implementations and respective hyper-parameters settings taken from examples provided in IBM Al Fairness 360 Library



Empirical Implications

Postprocessing Approach Inprocessinf Approach

[ | |

(Pleiss et al. 2017) with | (Pleiss et al. 2017) with (Kamiran et al. 2012)
FPR Constraints FNR Constraints with SP Constraints

Train FPRD Test FPRD Train FNRD  Test FNRD Train SPD Test SPD

COMPAS
Dataset -0.00155 0.061 0.0056 0.099 0.0229 0.2651
Train FPRD Test FPRD Train FNRD  Test FNRD Train SPD Test SPD
ADULT
Dataset -0.00724 0.0725 0.00295 0.0377 -0.0390 -0.1137

Kallus and Zhou (2018) made similar observations for * Similar observations for
Hardt et al (2016)’s algorithm on NYPD SQF dataset. Celis et al (2019)’ algorithm.

Difference in Test and Train Fairness of Fair ML Algorithms under Training Data with Missingness

All implementations and respective hyper-parameters settings taken from examples provided in IBM Al Fairness 360 Library



Empirical Implications

Postprocessing Approach Inprocessinf Approach Preprocessiing Approach

[ | | |

(Pleiss et al. 2017) with | (Pleiss et al. 2017) with (Kamiran et al. 2012) (Kamiran and Calders
FPR Constraints FNR Constraints with SP Constraints 2012)

Train FPRD Test FPRD Train FNRD  Test FNRD Train SPD Test SPD Train EOD Test EOD

COMPAS
Dataset -0.00155 0.061 0.0056 0.099 0.0229 0.2651 0.0111 -0.2266
Train FPRD Test FPRD Train FNRD  Test FNRD Train SPD Test SPD Train EOD Test EOD
ADULT
Dataset -0.00724 0.0725 0.00295 0.0377 -0.0390 -0.1137 0.0293 -0.1327

Kallus and Zhou (2018) made similar observations for * Similar observations for
Hardt et al (2016)’s algorithm on NYPD SQF dataset. Celis et al (2019)’ algorithm.

Difference in Test and Train Fairness of Fair ML Algorithms under Training Data with Missingness

All implementations and respective hyper-parameters settings taken from examples provided in IBM Al Fairness 360 Library



Related Work

Missingness
in Variables
Only Y is
missing in the
rows corre- | No
sponding to

D affects Y? Related Work

(Lakkaraju et al.
2017)

Entire  rows
(X,Y, Z) cor- and Zhou 2018: En- Our focus is on general

responding to sign et al. 2018; Kil- identifiability and implications
D = 0 are bertus et al. 2026) for fair machine learning

This Paper + (Kallus

missing.

(Jung et al. 2018;
Coston et al. 2020;
Kallus and Zhou
2019)

not observed,
X,Y,Z have | Yes
no missing-
ness.

55



Causal Graphs for Data Missingness
(Karthika Mohan and Judea Pearl, 2019)

1A B G OFF MAR MNAR
2 A, B, C, OFF

3 A, B, ON R : Missigness mechanism

4 A, B, ON variable for variable C

L C*= C if Rc = OFF

6 Ay B ON C* = missing if Rg = ON

7 Ag B, C, OFF 63



Notation

* X — Non-sensitive Features
* / —Sensitive Attribute

* D — Past Binary Decision

* Y — Outcome

e J — Unobserved features

« Y — Classifier Prediction



Fairness

 Demographic Parity (DP)

P(Y=1|Z=b)=P(Y=1|Z=w)

e Equality of Opportunity (EOP)

P(Y=1|vy=1Z=b)=P(Y=1|Y=1Z=w)



Estimating Equality of Opportunity Fairness
constraint with Incomplete Data

What fairness algorithms actually
estimate from incomplete data

Y*, 7%

P(Y*

= P(Y|v,Z,D = 1)
=+ P(?|v,2)

because Y 7K|_ D | Y,Z

d-separation (Pearl 1988)
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Estimating Demographic Parity Constraints with
Incomplete Data

P(Y*|z*) # P(Y|Z)




More general results

Fairness Algorithms: Demographic parity, equality of opportunity
P(Y|X),P(Y|X,Z),and/or P(X),P (X, Z).

Missingness Mechanisms:
Fully-Automated, Human, Machine-Aided Decision Making

Recovering joint distribution of features is
impossible in almost all cases of missingness
caused by past decisions. Conditional
distributions (risk scores) may be recoverable in
some cases, depending on the causal graph.

Missingness caused by human (or
machine aided) decision making is
more challenging than that caused by
fully automated decision making.

Importance of Modeling Data Missingness in Algorithmic Fairness: A Causal Perspective. AAAI 2021



Censoring due to Fully Automated Decisions

P(Y|X)

P(Y|X,Z)

P(X,2)

x and non-recoverable

P(X)

Non-recoverable: No matter how many data
samples are provided, there exists no estimator
to get the correct probability distribution.
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Censoring due to Fully Automated Decisions

P(Y|X) x
Z X >(Y) P(YIX,2)

P(X) x and non-recoverable
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Censoring due to Human Decisions

Use of unobserved features in decision making.
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Censoring due to Human Decisions

U (D)
l/]‘
(Y|X,2) and non-recoverable
0 PY\X,Z x

P(X) x and non-recoverable

Z

| A

Z X5 ¥
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Censoring due to Machine-Aided Decisions

D_ /@ m
' ‘ P(Y|X,2) x and non-recoverable
O

Z (X

P(X) x and non-recoverable

A A

Z X5 ¥
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summary

* Recovering joint distribution of features is impossible in almost all cases of
missingness caused by past decisions.

* Conditional distributions (risk scores) may be recoverable in some cases,
depending on the causal graph for missingness.

Both conditional and joint distributions are used in several state of the art fairness algorithms.

* Missingness caused by human (or machine aided) decision making is more
challenging than that caused by fully automated decision making.

* Small change in causal structure may lead to very different conclusions.
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